Huimin Li (李慧敏)

Lecturer I

School of Mathematical and Statistical Sciences
The University of Texas Rio Grande Valley

Office: EMAGC 2.336
Email: huimin.li01@utrgv.edu

Google Scholar

GitHub

LinkedIn

Education

Ph.D. in Data Science and Statistics
The University of Texas at Dallas (UTD), Richardson, Texas, United States
Advisor: Dr. Qiwei Li
Aug 2020 - May 2025
M.S. in Statistics
The University of Texas Rio Grande Valley (UTRGV), Edinburg, Texas, United States
Advisor: Dr. Xiaohui Wang
Jan 2017 - May 2019
Bachelor of Management in Business Administration
Xiangtan University, Xiangtan, Hunan, China
Sep 2009 - Jun 2013

Research Interests

Bayesian statistical methodologies for spatial analysis and high-dimensional data analysis
Application: Spatially resolved transcriptomics
  • Spatial domain detection via spatial clustering
  • Discriminating gene identification via feature selection
  • Cell-type deconvolution
Deep learning for biomedical image analysis (segmentation and classification)
Application: Biomedical images
  • Topology-driven image analysis
  • Uncertainty quantification/estimation

Selected Publications [Google Scholar]

Bayesian and Statistical Methodology
Robust Bayesian integrative modeling of single cell and spatially resolved transcriptomics data
H. Li, B. Zhu, X. Jiang, Y. Ma, L. Xu, and Q. Li
bioRxiv:2025.04.22.650087

[Link][GitHub]

An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data
H. Li, B. Zhu, X. Jiang, L. Guo, Y. Xie, L. Xu, and Q. Li
Biometrics, 2024, Volume 80, Issue 3, ujae066

[Link][GitHub]

Spatial Transcriptomics Arena (STAr): An integrated platform for spatial transcriptomics methodology research
X. Jiang, D. Luo, H. Li, E. Fernández, K. C. Lutz, S. Bedi, J. Yang, Y. Zhan, B. Yao, G. Xiao, X. Zhan, Y. Xie, and Q. Li
bioRxiv: 2023.03.10.532127

[Link][WebApp]

Artificiual Intelligence
Self pre-training with topology- and spatiality-aware masked autoencoders for 3D medical image segmentation
P. Gu*, H. Li*, Y. Zhang, C. Wang, and DZ. Chen
In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM, 2025)
TopoImages: Incorporating local topology encoding into deep learning models for medical image classification
P Gu, H. Wang, Y. Zhang, H. Li, C. Wang, DZ. Chen Pengfei Gu, Hongxiao Wang, Yejia Zhang, Huimin Li, Chaoli Wang, and Danny Z. Chen
In Proceedings of the 33rd ACM International Conference on Multimedia (ACM MM, 2025)

[Link]

Topo-VM-UNetV2: Encoding topology into vision mamba UNet for polyp segmentation
D. Adame, J. Nunez, F. Vazquez, N. Gurrola, H. Li, H. Tang, B. Fu and P. Gu
In Proceedings of the 38th IEEE International Symposium on Computer-Based Medical Systems (CBMS, 2025)

[Link]

Adapting a segmentation foundation model for medical image classification
P. Gu, H. Tang, I. Ebeid, J. Nunez, F. Vazquez, D. Adame, M. Zhan, H. Li, B. Fu and DZ. Chen
In Proceedings of the 38th IEEE International Symposium on Computer-Based Medical Systems (CBMS, 2025)

[Link]

Teaching Experience

Instructor
The University of Texas Rio Grande Valley, Edinburg, TX
  • CSCI 6344 Introduction to Data Science Fall 2025
  • STAT 2334 Applied Statistics for Health Fall 2025
  • MATH 1342 Elementary Statistical Methods Fall 2025

Graduate Teaching Assistant
The University of Texas at Dallas, Richardson, TX
  • STAT 5353 Probability & Statistics for Data Science and Bioinformatics Spring 2025
  • STAT 7330 Bayesian Data Analysis Spring 2022 - Fall 2024
  • STAT 4355 Applied Linear Models Spring 2021, Fall 2021
  • MATH 2417 Calculus I Spring 2021, Fall 2021, Spring 2022
  • STAT 3341 Probability and Statistics in Computer Science and Software Engineering Fall 2020

Graduate Teaching Assistant
The University of Texas Rio Grande Valley, Edinburg, TX
  • MATH 2414 Calculus II Fall 2017
  • MATH 1343 Introduction to Biostatistics Fall 2017
  • MATH 2413 Calculus I Spring 2017, Fall 2017
  • MATH 1314 College Algebra Spring 2017
  • MATH 3337 Probability & Statistics Spring 2017


© Huimin Li | Last updated: